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SUMMARY 

A compact, finite volume, time-marching scheme for the two-dimensional Navier-Stokes equations of 
viscous fluid flow is presented. The scheme is designed for unstructured (locally refined) quadrilateral 
meshes. An earlier inviscid equation (Euler) scheme is employed for the convective terms and the emphasis is 
on treatment of the viscous terms. An essential feature of the algorithm is that all necessary operations are 
restricted to within each cell, which is very important when dealing with unstructured grids. Numerical 
issues which have to be addressed when developing a Navier-Stokes scheme are investigated. These issues 
are not limited to the particular Navier-Stokes scheme developed in the present work but are general 
problems. Specifically, the extent of the numerical molecule, which is related to the compactness of the 
scheme and to its suitability for unstructured grids, is examined. An approach which considers sup- 
pression of o d d w e n  mode decoupling of the solution when designing a scheme is presented. In addition, 
accuracy issues related to grid stretching as well as boundary layer solution contamination due to artificial 
dissipation are addressed. Although the above issues are investigated with respect to the specific scheme 
presented, the conclusions are valid for an entire class of finite volume algorithms. The Navier-Stokes solver 
is validated through test cases which involve comparisons with analytical, numerical and experimental 
results. The solver is coupled to an adaptive algorithm for high-Reynolds-number aerofoil flow com- 
putations. 
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1. INTRODUCTION 

Numerical simulations of flow fields are becoming of increasing importance for engineering 
applications. Various simplified sets of the governing equations have been used, since solution of 
the full Navier-Stokes equations that govern fluid flow is quite expensive. However, the complex- 
ity of flows encountered in modern applications requires solution of the full Navier-Stokes 
equations. Adaptive algorithms are a new generation of algorithms which change form and 
structure during the solution process in order to achieve accuracy with minimum computational 
effort. The first adaptive scheme for turbulent flows was developed in References 1-3. The 
algorithm uses adaptive, locally embedded quadrilateral grids in order to resolve local flow 
features. 

Currently, efficient inviscid equation (Euler) solvers are being used for  application^.^. Accu- 
racy and efficiency issues have been addressed to some extent and these solvers are quite 
established. The next step is to extend these Euler schemes to include viscous terms.'. 396-8 There 
are special numerical problems associated with the treatment of viscous terms. These terms pose 
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significant accuracy problems which have to be addressed when developing a Navier-Stokes 
scheme. The viscous terms contain higher-order derivatives compared to the convective terms 
and therefore a larger numerical molecule is normally required. This results in a scheme with 
different molecules for the convective and viscous terms, which is undesirable, especially when an 
unstructured grid algorithm is employed.’, Such algorithms require a scheme which is compact 
and with all operations restricted to within each grid cell. Grid stretching poses severe accuracy 
problems, since numerical approximation of second-order derivatives of the viscous terms is more 
susceptible to such errors compared to evaluation of the inviscid terms that consist of first-order 
derivatives.’ 

Central space-differencing schemes are usually susceptible to odd-even decoupling of the 
solution. Both one- and two-direction sawtooth modes may appear, which makes convergence 
slower and in some cases may prevent convergence of the algorithm. Usually, artificial dissipation 
is employed in order to suppress these modes. Special care has to be taken in order to devise 
a scheme which does not allow these modes to appear. Smoothing may still be required in the 
inviscid regions of the domain as well as for capturing shocks. However, the presence of artificial 
dissipation terms in viscous regions may seriously deteriorate the accuracy, since these smoothing 
terms may ‘mask‘ the physical viscous terms. 

The emphasis in the present work is on the design of a numerical scheme for the viscous terms 
of the Navier-Stokes equations with unstructured grids by taking into account all the above 
issues. Although the numerical problems are investigated with respect to the specific scheme 
presented, the conclusions are valid for an entire class of finite volume algorithms. In addition, 
cases that involve comparisons with available data are important in order to validate the 
accuracy of the proposed solver. 

In the following the discretization of the inviscid terms of the governing equations is presented 
first. Then the treatment of the viscous terms with embedded grids is described. The numerical 
issues of conservation, time step restriction, grid-stretching effect on accuracy as well as sup- 
pression of the sawtooth modes are addressed in connection with the proposed scheme. Then the 
artificial dissipation operator is presented and its effect on the accuracy of the viscous region 
solution is examined together with the determination of optimum smoothing coefficients. Finally 
the accuracy of the Navier-Stokes solver is investigated through test cases which involve 
comparisons with analytical, numerical and experimental results. 

2. GOVERNING EQUATIONS 

The system of two-dimensional Navier-Stokes equations may be written in Cartesian two- 
dimensional conservation form as 

a u  a F  8~ aR a s  
at ax ay ax ay’ 
-+-+-=-+- 

where 
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are state and convective flux vectors in the x- and y-direction respectively. The viscous flux 
vectors are 

where tXx, zvv and zxv are viscous stresses and qx and 4,, are heat conduction terms. In the above 
relations p is the density, u and v are the velocity components, E is the total internal energy per 
unit volume and p is the pressure. 

3. INVISCID TERMS 

A one-step Lax-Wendroff-type integration scheme due to Ni5 has been employed for discretiz- 
ation of the convective terms of the Navier-Stokes equations. Omitting the viscous terms, the 
Euler approximation is 

au aF aG 
-+-+-=0, 
at ax ay 

where U is the state variable vector and F and G are the convective term flux vectors as defined in 
(1). Integration of the above relation over the area of a cell leads to the equivalent integral relation 

"1 Udxdy+$ (Fdy - Gdx)=O. 
dt cell area cell faces 

(3) 

The first term in the above relation represents the change in time of the state vector over the cell 
area S and is discretized as (AU/At)S, where U is the state vector value at the centre of a cell and 
AU = U"' - U" is its change over one time step. The second term in (3) represents the convective 
fluxes across the cell faces and is computed via the trapezoidal integration rule. 

The state vector change in time, AU, at the centre of the cell has to be distributed to the corners. 
Consider the change 6U at a grid node and the Taylor series expansion in time 

The second-order time term in (4) is calculated following the Lax-Wendroff" approach, which 
replaces time derivatives with spatial derivatives from the governing equation. 

Finally the following formulae for the distribution of the time change AU to the cell corners are 
derived: 
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At 
S 

At 
S 

A f z -  (AFAJJ-AGAx'), 

Ag = - (AGAx" - AFAy"), 

aG 
AGE-AU. 

aF 
au au AFr-AU, 

The subscripts sw, nw, ne and se denote the four corners of a grid cell. The cell metric terms Ax', 
Ay', Ax" and Ay" are defined as 

AX' =O.~(X,, + x,, - x,, - x~,), (74  

where I and rn denote the two cell directions. It is imp0rtan.t to note that all necessary operations 
for the above scheme are confined to the interior of each grid cell; no information is required from 
the exterior of the cell. 

The inviscid multiple-grid operator suggested by Ni5 is employed in order to accelerate wave 
propagation and therefore convergence. This involves a series of coarser grids which are defined 
from the immediately finer grid by deleting every other line. The operator uses the distributed 
changes 6U to the corners and redistributes them to coarser grids. A detailed investigation of the 
inviscid scheme with the multiple-grid accelerator can be found in Reference 11. 

4. VISCOUS TERMS 

A novel finite volume scheme for the viscous terms of the Navier-Stokes equations will now be 
developed. The emphasis is on constructing a compact scheme suitable for unstructured grid 
computations. The change in time of the state variables which is contributed to by the viscous 
terms is also given by the Taylor series expansion (4). However, the Jacobians dF/aU and aG/aU 
involved in the expansion include viscous terms as well. This makes the scheme expensive and 
complicated, especially when the extra terms due to a turbulence model are included." More- 
over, the use of the same grid cells for the evaluation of the viscous spatial derivatives results in 
a larger computational molecule than the one required solely for the inviscid terms. This is an 
undesirable property when unstructured meshes are employed. Finally, application of boundary 
conditions becomes difficult owing to the large stencil of the scheme. 

In view of the above considerations, a compact scheme was developed such that all necessary 
operations are restricted to within each cell. Only the first-order temporal term in the Taylor 
expansion (4) is kept, which yields a scheme that is first-order accurate in time and which 
eliminates the need to compute viscous term Jacobians. The development of the scheme starts 
with a consideration of the viscous part of the Navier-Stokes equations in integral form: 
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The terms represented by R and S include stress and heat conduction terms and involve 
first-order spatial derivatives. Two issues must be addressed when developing a scheme to 
evaluate the viscous terms in (8): the first is the choice of the cell R which will be employed to 
evaluate the line integral $n(Rdy-Sdx); the second is the choice of a discretization scheme for the 
terms R and S. 

A primary concern in the choice of R is maintaining the numerical molecule relatively small 
and identical to that employed for evaluation of the inviscid terms. The staggered cell ABCD 
shown in Figure 1 is used here and will be referred to as the primary cell. A similar cell was 
employed in Reference 6 for a finite difference discretization scheme of the viscous terms. 

The unsteady term in (8) is discretized as (AUviS/At)S. The term AUvis represents the change in 
time of the state vector due to the viscous terms only. Performing the line integration around cell 
ABCD using the midpoint rule results in 

3 

Figure 1. Primary cell for viscous terms discretization 
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In the above expression the R- and S-terms are evaluated at midfaces da, cd, bc and ab of the 
primary cell ABCD. The metric terms are 

Finally, the time step At and the area S refer to cell ABCD. It is important to note that the change 
in time, AUVi, is evaluated at each grid node directly, as opposed to the inviscid counterpart which 
is evaluated at the cell centres first and then distributed to the nodes. 

It remains to evaluate the terms R and S, which consist of first-order spatial derivatives. 
Green's theorem is applied again in order to discretize the derivatives.'. l 3  The evaluation can be 
explained by considering the derivative (au/dx),, of variable u at point cd (Figure 2). The cell with 
corners at points da, bc, C' and D will be referred to as the secondary cell. 

Performing the line integration around the secondary cell, it follows that 

The values of u at cell centres D and C are obtained by averaging the corresponding values at the 
corners of the grid cells with centre points D and C, and Scd is the area of the secondary cell 
around point cd. Similar cells surrounding points bc, ab and da are employed to evaluate deriv- 
atives at these points. 

Figure 2. Secondary cell for stress term discretization 
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4.1. Operations restricted to within each cell 

Adaptive algorithms have been developed for more efficient computations. They utilize 
unstructured grids and may use various sets of governing equations in different regions of the 
domain.' As a consequence it is essential for these algorithms that all scheme operations are 
restricted to within each cell without any information required from outside the cell. The above 
described scheme will now be modified to a compact form which is most suitable for unstructured 
grid computations. Care is taken so that no assumptions are made that would prohibit extension 
of the 2D scheme to three dimensions. 

Equations (9) and (10) require information from the four cells A, B, C and D (Figure 1) which 
surround grid node 0, and scheme operations must be split and allocated to these cells. More 
specifically, the terms in (9) can be rearranged as 

Each of the terms RA, SA, RE, SB, etc. consists of terms related to cells A and B respectively. More 
precisely, RA denotes the part of the stress term R-expression at points da and ab which originates 
in cell A. The rest of the R- and S-terms have analogous meanings. The metric terms Axm, Aym 
and Ax', Ay' denote distances along the two directions m and 1 of a cell and have been defined 
in (7). The next step assumes that there is no appreciable stretching in the grid, which im- 
plies that Ay",Ay:, AxZwAx:, etc. and S A Z S B Z S C Z S D .  It is also assumed that 
AtA % AtB %Atc % AtD =At. The above assumption is already implicitly made when using Green's 
theorem in order to obtain values at the centres of cells. The grid-stretching issue will be 
investigated in Section 5.4. In practice it has been found that levels of stretching up to 30% are 
acceptable by the scheme. On the basis of the above assumptions, equation (1 1) becomes 

At 
S AU,,is =- [ + ( + RDAYZ + RAAy;) - ( + SDAXZ + S A A X ~ )  

+ (+ RcAy& + RDAyb) - (+ &AX; +SDAxb) 
+( -RBAy~-RcAyc")-(-SBAx~-ScAx,") 

+ ( - R A A ~ ~ - R B A ~ L ) - (  -SAAX~-!$~AXL)] 

At 
S 

=- [ +( + R;AYZ+ ~ f i ~ y z ) - - (  +S  ;AXE + S i  Axz) 

+( + R : A ~ : , + R ; A ~ ~ ) - (  +s:A&+s;A&) 
+ ( - R ~ A Y ~ ;  - R ~ A Y ? )  - (- S:AX; -SFAX;) 

+ ( - R z A y i  - RiAyL)- (- S ~ A X :  - S~AXL)]. (12) 
The superscripts of the R- and S-terms refer to cell faces. For example, R E  implies the part of the 
line integration around the secondary cell (da, bc, C ,  D), which corresponds to the west face of 
cell D. Each cell contributes a part of the line integration around the primary cells which surround 
its corners, and the cell contributions to the change in time, Allvis ,  of state vector U due to the 
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viscous terms follow from (12): 

At 

At 

At 

At 

(AUviJsW =-j- [( + RSAy'- RWAym) - (+ SsA~'-SwA~")] ,  

(AUviJnP=% [( + RNAy'+ RWAy")-( + S N A d  + SWAY")], 

(AUviJne=- S [( -RNAy'+REAym)-( - S N A ~ ' + S E A ~ " ) ] ,  

(AUvis)sc=- S [( -RSAy'-REAym)-( -SSAx'-SEAx")], 

(134 

(134 

( 134 

(134 

where the subscripts denote the four corners of the cell. 

into separate contributions from the cells involved. From (10) we obtain 
It remains to describe how first-order derivative expressions such as in equation (10) are split 

where the previous assumption that the areas Sc and SD of grid cells C and D are equal is 
employed again. The first term on the RHS of equation (14) corresponds to RE, while the second 
term refers to R g .  

Summarizing, the evaluation of the change in time of state variables due to the viscous terms 
consists of two basic steps: the first step computes the parts of the stress and heat conduction 
terms which correspond to each cell (equation (14)), while the second step evaluates the changes 
AUvis at the corner nodes of each cell (equation (13)). It is important to note that the viscous 
scheme operations are decoupled entirely from the operations for the inviscid terms, which makes 
it simple to switch off viscous term evaluations in inviscid regions (equation adaptation).'. 

The CPU time consumed is 0007 s per node per iteration on the Vax/750 computer. The 
scheme requires eight words of memory per node for the state vector U and the distribution 6 U .  
Also, four words per node are required to store the second-order differences of the fourth-order 
smoothing operator. Additional storage may be used for the time-step and the various metrics. 

5. NUMERICAL ISSUES FOR VISCOUS TERMS 

The present scheme for the viscous terms is examined with respect to numerical issues that were 
addressed when developing the algorithm. It should be emphasized that the same issues have to 
be examined during development of an entire class of finite-volume Navier-Stokes schemes. The 
analysis of Sections 5 and 6 is valid for a wide range of central-type space-differencing algorithms. 
An approach of examining the existence of odd-even modes in the solution will be presented. Then 
the conservation property will be examined. Next the inviscid and diffusion stability limitations 
will be compared, followed by an investigation of the effect of grid stretching on the accuracy. 
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5.1.  Odd-even solution decoupling 

A novel consideration when constructing a numerical scheme is presented in this subsection. 
The present viscous term scheme was designed so as to prevent the appearance of oscillations in 
the solution. Central space-differencing schemes are usually susceptible to odd-even decoupling. 
Frequently the line integrations admit sawtooth modes as valid solutions. Both one- and 
two-direction odd+ven modes may appear as shown in Figure 3, where + and - indicate 
deviations from a mean. 

The appearance of these modes makes convergence slower and in some cases may prevent 
achievement of a steady state. Usually artificial dissipation is employed in order to suppress the 
modes. In the present scheme for the viscous terms special care was taken in order to devise 
a scheme which does not allow sawtooth modes to appear. It turns out that the choice of the 
secondary cells plays a crucial role in the behaviour of the scheme for odd-even decoupling of the 
solution. The choice of asymmetric overlapping secondary cells has the effect of suppressing the 
one- and two-direction o d d w e n  modes shown in Figure 3. In the first case the integration 
around node 0 makes a positive contribution to this node, while in the second case a negative 
contribution is provided. This can be observed by substituting a sawtooth solution of the 
form + 1, - 1 into the viscous contribution formulae (13). Therefore in both types of sawtooth 
modes the scheme tends to suppress them. 

Instead of a staggered secondary cell, another possibility would use averaging in order to 
obtain the face stresses. For the cd node (Figure l), averaging such as R c d = t ( R c + R D )  can be 
used. In this case the grid cells C and D are used as secondary cells in order to evaluate Rc and RD. 
However, this method allows the two-direction o d d w e n  mode to exist and additional smooth- 
ing is required in order to stabilize the scheme. Since the inviscid part of the scheme allows 
odd-even modes, smoothing is required within the inviscid portions of the flow domain. 

5.2. Conservation 

The Navier-Stokes equations express conservation of mass, momentum and energy. The flow 
domain is divided into smaller volumes and the numerical scheme is then applied on each of the 
cells. For global accuracy of the scheme it is important to conserve the above flow-quantities over 
each individual cell and therefore over the entire domain. Schemes that accomplish this are said 
to have the conservation property. 

( a )  one direction mode (b) two directions mode 

Figure 3. Odd-even solution modes 
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A definition of conservation can be derived by considering the viscous part of the equations 
integrated throughout the domain: 

5 {{ Udxdy= Rdy - Sdx. 
dt  domain 

The domain is divided into smaller control surfaces, the cells, and the above expression leads to 
the following general definition of conservation: 

1 C - d u n o d e  Anode = boundary terms. 
nodes At 

In the above the Anode are suitable areas which surround the grid nodes. For the present scheme 
the change b u n o d e  at each node is the sum of the contributed changes from the adjoining cells as 
given by formulae (1 3). Therefore 

1 =boundary terms. SUcorner Acell 
cells At 1 ( 

It is apparent that the distribution formulae (13) satisfy the above equation, since the sum of the 
contributions from each cell to its four corners, 1‘: 6UCorn,,, is zero, implying that the scheme is 
conservative. Similarly, the distribution formulae (5) for the inviscid terms show that the scheme 
for the inviscid terms is also conservative. 

The flow through a 40% bump in a channel (Mach number 1.4, Reynolds number lo4) is 
employed as a test case in order to investigate conservation of the scheme. An oblique shock 
forms at the leading edge of the bump. Figure 4 illustrates the mass flow across the channel and 
shows that there is no mass error between the inlet and the outlet. The jump in the distribution 
around X = 0 1 is due to the addition of artificial dissipation in order to capture the oblique shock 
wave. 

5.3. CFL versus dijiusion stability restrictions 

Using central space and forward time differencing, the stability limitation for the model 1D 
wave equation u, + cug = 0 is cAt/Ay I 1 (CFL limitation), while the corresponding stability 
restriction for the 1D model diffusion equation ut= vuyy is vAt/(Ay)’ If. Comparing the two time 
step limitations, we obtain 

where it is considered that v- 1/Re and c- l / M m .  It is apparent that in most common cases the 
CFL stability restriction is much more severe than the viscous time step limitation. Only in cases 
of low Re and/or high M,, can the viscous limitation be severe. 

In the present scheme a combination of the two limitations was employed. Specifically, 

Am 
Iul+c+v/aAm’ 

At=w min 

where Am and A1 are the cell dimensions in the directions m and 1 respectively, c is the speed of 
sound, u and v are the velocity components, v is the kinematic viscosity coefficient and c1 = f is the 
diffusion stability limitation. Lastly, w is a safety factor equal to 0.9. 
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Figure 4. Check of mass conservation4% bump in a channel ( M ,  = 1.4, Re= lo4) 

5.4. Grid-stretching efect on accuracy 

The viscous term scheme is second-order-accurate in space for a uniform Cartesian mesh. Grid 
stretching and skewness reduce the spatial accuracy to first-order. Generally, the numerical 
approximation of second-order derivatives of the viscous terms is more susceptible to grid-related 
errors compared to the evaluation of the inviscid terms.’ The spatial accuracy of the viscous term 
discretization therefore merits special attention. 

Green’s formula provides a derivative value which is averaged over the cell area but does not 
necessarily apply at the centre of the cell. In fact, the substitution ( a u / J x ) , = ( l / S )  $udy, which 
evaluates a derivative at point 0 of a cell with area S, holds only if 0 is located at the centroid of 
the cell. This can be seen from a Taylor series expansion of &/ax (x, y) around the point (xo, yo) 
so that 
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Therefore 

holds exactly only if 

for m, n=O,  1, . . . , which means that (xo, yo) must lie at  the centroid of the cell. This is not the 
case if grid stretching is present. 

Consider the one-dimensional case which evaluates a quantity u at point A (G say) using the 
values of quantities at neighbouring points A +  and A-: 

Taylor expanding uA- and uA+ and substituting in (21) gives 

+ G = u ~ + ~ ( A s + - A s - ) - + .  au . . , 
as 

where AS' and AS- are the distances between points A and A +  and points A-  and A respect- 
ively. The derivative terms on the right-hand side represent the error that results when approxi- 
mating K. Without stretching (AS' =AS-), an evaluation of G is second-order-accurate, but 
reduces to first-order when stretching is present. 

In order to restrict all scheme operations within each cell, it is necessary to assume that the four 
cells which surround each node (cells A, B, C and D in Figure 1) have equal metrics. However, the 
error introduced by grid stretching is of the same order as that introduced by applying Green's 
theorem. Therefore these assumptions do not deteriorate the spatial accuracy of the scheme any 
further. In practice it has been found that stretching factors less than 30% are acceptable and do 
not introduce appreciable inaccuracies. 

6. ARTIFICIAL DISSIPATION 

Smoothing accomplished by explicitly adding dissipation is employed by a large number of 
existing schemes, especially those concerned with compressible flows. There are two main types of 
such artificial smoothing: one is used to capture shocks, the second is designed to damp spurious 
oscillations throughout the field and to suppress o d d w e n  decoupling of the  solution^.^. l4 The 
smoothing operators are cast in a form suitable for unstructured grids. All operations are split in 
such a way that no information is required from outside each cell. These second- and fourth-order 
smoothing operators are examined in detail in order to address the relevant issues of viscous 
region contamination by artificial smoothing and the degradation of order with grid stretching. 

6.1. Unstructured grid formulation 

Second-order smoothing provides the damping necessary to smear a shock, which ideally has 
zero thickness, in such a way that oscillations are avoided. Since such smoothing is required only 
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C B 

7 6 -  

Figure 5. Node and cell designations for smoothing operators 

in shock regions, a switch is employed to turn it off elsewhere. Consider the specific discretization 
for a cell vertex scheme at node 0 (Figure 5). 

The node receives contributions from each of the four surrounding cells: that from cell A is 

similarly, from cell D it is 

Similar expressions furnish contributions from cells C and B. The above is first-difference, but 
after the node receives contributions from surrounding cells it becomes second-difference. 
Pressure differences in the switch are normalized by the sum of the pressures at the four corners of 
each cell. The sum of the smoothing distributions to the four nodes of each cell is zero, which 
implies that the above operator is conservative. 

The fourth-order smoothing that is used away from shocks to suppress odd-even modes and 
damp spurious oscillations is turned off near shocks because it is destabilizing. The operator is 
formed in two steps. The second-order difference operator is formed in the first step (Figure 5): 
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The second step duplicates the first, replacing state variables by second-order differences from the 
first step: 

- 0 4  OA- - D i +  D $ +  D:+ D:-4Di, 

- 0 4  OB - -0: + D i +  0: +D;-4Di,  

- 0 4  oc-D:+D:+ - D;+D$-4Di,  

6.2. Smoothing coeficien ts 

The combined second- and fourth-order smoothing operator has the form 

6ui=& azS? -a max(0, o,-a,AP)Df, (27) 
where Sf and Df are the second- and fourth-order operators discussed above, az and a4 are the 
corresponding smoothing coefficients and AP is the pressure switch. Near shocks the term a2AP 
dominates o4 and therefore max(0, o4-azAP) vanishes and switches off the fourth-order 
smoothing. 

Numerical experiments have been carried out to determine optimum values for the smoothing 
coefficients. The example considers flow at Mach number 0.5 and 1.4 and with Reynolds number 
8 x lo3 in a channel with a bump and a 65 x 33 grid. The bump is located between X=O and 1. 
Figure 6 shows Cp distributions for the subsonic case with and without fourth-order smoothing 
only and it is clear that even a small amount of dissipation suppresses the sawtooth mode. 
Similarly, a supersonic case (M, = 1-4) was used to study the second-order smoothing coefficient. 
Figure 7 shows Cp wall distributions with a fourth-order smoothing coefficient a4 =0.0005 and 

I 

I 
c 0 

n a 

0 

0 
0 45 00  0 5  10 1 5  -10  -05 0 0  05 1.0 15 

uc x)[: 

(a) wi thou t  smoothing (b) w i t h  smoothing u4 = 0.0005 
Figure 6. Effect of fourth-order smoothing on odd-even decoupling (surface pressure distribution) 
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XIC YIC 

(a) smoothing c o e f f .  crz = 0.05 (b) smoothing coe f f .  02 = 0.40 

Figure 7. Shock capturing with second-order smoothing (surface pressure distribution) 

shock-smoothing coefficients gz of 0.05 and 0.40. Clearly the value of 0.40 smears the shock 
excessively, while the value of 0.05 is too small and preshock oscillations appear. A reasonable 
choice of smoothing coefficients is crz = 0.20 and o4 = 0.0004. Although the values were deter- 
mined for relatively low Reynolds number, they have been found to be valid for high-Reynolds- 
number computations as well. This is due to the fact that smoothing scales with mesh size, which 
is normally smaller for higher Reynolds numbers. 

6.3. Boundary layer contamination 

Smoothing is still required in the inviscid regions since the inviscid term discretization scheme 
allows odd-even modes to exist. The presence of smoothing in viscous regions may seriously 
deteriorate the accuracy. Figure 8 demonstrates contamination of the boundary layer by smooth- 
ing via wall skin friction coefficient distributions for values of the smoothing coefficient o4 equal 
to 0.004 and zero. Both the way in which smoothing terms affect the viscous layer solution as well 
as the resolution requirements to avoid the error are of interest. 

The second- and fourth-order derivatives usually take large values within the viscous region 
and therefore smoothing contaminates the viscous layer more than other regions. For the model 
diffusion equation u, = vuyy we have 

v4(AY)3 UYYYY' lUl+' g 2 ~ ~ ~ p y y + -  
lul+c 
CFL 

u, = VUYB +- 
CFL 

where the last two terms represent first- and third-order errors introduced by the two smoothing 
operators. The CFL stability condition ((I u I + c)At/Ax = CFL) was used in order to eliminate the 
time step At from the above expression. To ensure that the artificial viscosity is much less than the 



208 Y. KALLINDERIS 

9 -7 -1.0 -0.5 0.0 0.5 1 .o 1.5 

XIC 

- 04 = 0 , 0 04 = 0.004 

Figure 8. Contamination of boundary layer solution by smoothing (skin friction coefficient distribution) 

physical viscosity, 

0 2 A P A y G v ,  
C F L  

which yields 
CFL 

02‘ ReAPAy’  

in which the Reynolds number is specially defined as R e  =(I  u 1 + c) L/v. If A P  is negligible across 
the shear layer, then relatively large values of u2 can be used. However, A P  can be large near 
features such as shocks and expansions. For example, for the case C F L =  1, R e =  lo6, AP=O. l  
and A y =  we obtained 0~G0.1. 

For a fixed value of the smoothing coefficient u2 the resolution of the shear layer should be such 
that 

N being the number of grid points across the shear layer and Red=(IuI+c)6/v.  For the case 
CFL= 1, Red= lo3, AP=O. l  and g2 =0.1 the number ofpoints within the layer should be N B  10, 
so that the real viscous term dominates. Red is based on IuI +c and therefore in nearly imcom- 
pressible cases it can take very large values, which implies that considerable resolution is needed. 
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For a fixed value of the smoothing coefficient v4 the resolution of the shear layer should be such 
that 

Comparison with relation (30) shows that this resolution requirement is much less severe as 
a result of the higher order of this operator. For example, if CFL= 1, Rea= lo3 and v4=0.001, the 
number of points within the layer is N %  1. 

6.4. Grid stretching increases smoothing error 

The above smoothing operators introduce first- and third-order errors only for uniformly 
spaced grids. The actual order can be demonstrated by considering a one-dimensional stretched 
grid. A second-order smoothing operatar without the pressure switch has the form 
SG = u1 - 2u0 + u - 1, with 1,0 and - 1 being consecutive grid points. 

A Taylor series expansion about point Oleads to S i = ( h +  -h- )u ,++ [(h')Z+(h-)2]u,,t. . . , 
where h+ and h -  are the distances between points 0 and 1 and points -1 and 0 respectively. 
Assuming geometric stretching and with a = h + / h - ,  the operator becomes 

S ~ = h - ( a - l ) u , + ~ ( h - ) 2 ( a 2 + 1 ) u , , + .  . . . (32) 
The first-order term h- (a  - I)u, appears, which increases the smoothing error and makes the 
operator dispersive rather than dissipative. Similarly, the fourth-order difference operator 
Dd = u - - 4u - + 6 ~ 0  - 4ul + u2 has the following form for a geometrically stretched mesh: 

(33) 
Again the first-order term (a -2 ) (a -  l )h -u ,  increases the error and makes the smoothing 
dispersive. It is to be noted that geometrically stretched meshes are widely employed for viscous 
computations. The dissipative terms in equations (32) and (33) are positive for any a, which 
precludes the possibility of having negative damping for some a. 

D $ = ( a - 2 ) ( a -  l )h -u ,+2a( l  +a/4)(a2+ l)(h-)2u,,+. . . . 

7. SOLVER VALIDATION 

The accuracy of the Navier-Stokes numerical scheme has been investigated for both laminar and 
turbulent cases. Channel as well as aerofoil geometries were considered. An adaptive algorithm 
that uses both grid and equation adaptation was coupled to the solver for the aerofoil cases. An 
initial quadrilateral grid is automatically embedded in local regions of the domain in which 
important flow features exist. The embedding is achieved through subdivision of grid cells. Also, 
the scheme switches to the simpler inviscid flow (Euler) equations outside the viscous regions. 
Comparisons were made with analytical, numerical and experimental results. The cases include 
a Blasius boundary layer and a 5% bump in a channel. Also, high-Reynolds-number aerofoil 
cases in both subsonic and transonic flow were employed. Additional cases including two-element 
aerofoils are presented in Reference 1. The reported CPU times refer to an Alliant FX/8 computer 
with three processors of approximately 1.5 Mflops speed. 

The boundary conditions include wall and inflow/outflow conditions. At a wall there is no slip 
(u = u = 0), the temperature is either prescribed or its gradient is set to zero (adiabatic wall) and the 
normal-to-wall pressure gradient is set to zero. At inflow and outflow boundaries the 1D 
unsteady inviscid theory of characteristics dictates the number of variables that will be either 
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specified or extrapolated. At an inflow boundary in subsonic flow, total pressure, total temper- 
ature and flow angle (v/u) are specified, while the Riemann invariant J - = ~ - 2 c / ( y -  1) is 
extrapolated from the interior of the domain. At an outflow boundary in subsonic flow, density 
and u- and v-velocities are extrapolated, while pressure is prescribed. 

A Blasius boundary layer is computed with M ,  =0.1 and Re= lo3. A Blasius profile (X= 1)  
was specified at the inlet in order to avoid the leading edge singularity. A grid of 33 x 41 nodes 
was employed with 12 points within the boundary layer at the middle of the flat plate ( X  = 1.50). 
The smallest grid normal spacing at the wall was 0004 and a constant grid stretching factor of 1-1  
was employed in the normal-to-surface direction. No artificial dissipation was added. Figure 
9 compares the computed and corresponding analytical u-velocity profiles at position X = 1.50. 

The second test was a 5% bump in a channel in a subsonic flow at M, =05 and Re = 8 x lo3. 
This is the same case that was employed in Section 6.2 for determination of the fourth-order 
smoothing coefficient. A 65 x 33 grid with minimum wall normal spacing equal to 2.5 x is 
used. The skin friction ( C , )  curve for this example is compared in Figure 10 with the results of 
References 6 and 15. Employment of the multiple-grid accelerator of Reference 5 reduced the 
required CPU time to convergence by a factor of five. 

7.1.  Adaptive grid aerofoil cases 

The subsonic and transonic flow for an NACA 0012 aerofoil was considered and comparisons 
were made with experimental results obtained by an AGARD group.I6 The Baldwin-Lomax" 
algebraic model was employed for the turbulent flow computations. 

The subsonic flow conditions were M ,  =050, Re = 2.91 x lo6 and a = 1.77", where both the 
angle of attack and Mach number values are those suggested in Reference 16 to take into account 
wind tunnel wall effects. 

An initial C-mesh of 33 x 17 points was employed with two levels of refinement, resulting in 
a final number of 5225 cells within the domain. The minimum grid normal spacing at the aerofoil 
leading edge was 9 x 10- chord lengths, while that for the trailing edge region was 9 x The 

- p r e s e n t  work , Blasius solution 

Figure 9. Comparison of velocity profiles for a Blasius boundary layer 
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Figure 10. Comparison of skin friction distribution with previous numerical results-5% bump in a channel (M, = 0 5  
R e = 8  x lo3): -, present work; 0, Reference 6; A, Reference 15 

Figure 1 1 .  Two-level embedded gnd-subsonic NACA 0012 ( M ,  =0.5, Re=2.91 x lo6, a= 1.77"); horizontal scale 
enlarged 

spacing in the streamwise direction in the leading and trailing edge regions was 0.002 and 0.026 
respectively. Figure 11 illustrates the embedded grid, The case took 4000 iterations to converge 
(reduction in residual magnitude by three orders) and required 1.8 h. The resulting flow field is 
depicted in Figure 12 in terms of Mach number contour plots. The experiment16 provided 
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Mach Contours 

Figure 12. Flow field around subsonic NACA 0012 (M,=O.S, Re=2.91 x lo6, a= 1.77"); horizontal scale enlarged 
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Figure 13. Comparison of pressure coefficient distribution with experiment-subsonic NACA 0012 ( M ,  =0.5, 
Re=2.91 x lo6, a= 1.77"): -, present work; *, experiment16 

pressure distribution data (Figure 13); comparison shows very good agreement between numerics 
and measurements. The computed CL of 0.192 compares very well with the experimental value of 
0.195. 

The transonic flow conditions were M ,  = 0.754, Re = 3.76 x lo6 and a = 3.02". Again the angle 
of attack and Mach number values are those suggested in Reference 16 to account for wind tunnel 
wall effects. An initial C-mesh of 65 x 41 points was applied with the far-field boundary placed 15 
chord lengths away from the aerofoil. Three levels of embedding were introduced by the 
algorithm; the final grid is illustrated in Figure 14 and the final number of cells within the domain 
is 40440. The minimum grid normal spacing at the aerofoil leading edge is 2 x lo-' chord 
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Figure 14. Final three-level embedded grid-transonic NACA 0012 (M, =0.754, Re=3.76 x lo6, cr=3.02") 

lengths, while the spacing at the trailing edge region is 2 x lop4. The spacing in the streamwise 
direction at the leading edge region is 3 x while the corresponding spacing at the trailing 
edge is 0.004. The case took 5000 iterations to converge and consumed 8.5 h of computing time. 

Figure 15 illustrates the flow field in terms of Mach number contours. A shock forms on the 
suction side at 40% of the chord, with the Mach number just upstream of the shock being 1.31. 
The boundary layer on the suction side of the aerofoil starts to thicken upstream of the shock and 
separates at X=O.82 close to the trailing edge. On the other hand, the pressure-side boundary 
layer is considerably thinner and remains attached to the surface. The wiggles that appear just 
upstream of the shock are a result of odd-even modes. They exist owing to the use of low values of 
artificial viscosity so that the solution within the viscous region would not be contaminated. Such 
oscillations do not affect the shock location, which is predicted accurately. 

Interesting flow physics is revealed in an enlarged view of the shock-boundary layer interaction 
region (Figure 16). The severe adverse pressure gradient induced by the normal shock causes the 
boundary layer to thicken considerably and eventually to separate at the foot of the normal 
shock. A separation bubble is formed and it is captured in detail by the adaptive algorithm. The 
boundary layer separates at  X =036 and reattaches at  X = 0.52 chord lengths. It should be noted 
that the appearance of such separation bubbles is dependent on the turbulence model being 
employed. 

The procedure accuracy may be examined by comparing the experimental surface pressure 
coefficient distribution with the corresponding numerical result (Figure 17). The shock location is 
predicted reasonably accurately but is somewhat smeared. A fourth level of embedding which 
would provide a 'crisper' shock, was disallowed owing to computer limitations. The agreement 
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Figure 15. Flow field around transonic NACA 0012 (M,=0.754,  Re=3.76 x lo6, cr=3.02") 

0.020 
0.300 0.388 0.476 0.663 0.660 0.738 

Figure 16. Separation bubble at foot of shock-transonic NACA 0012 (M,=0.754, Re=3 ,76x  lo6, a=3.02") 
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Figure 17. Comparison of pressure coefficient distribution with experiment-transonic NACA 0012 (M, =0.754, 
Re = 3.76 x lo6, a = 3.02"): -, embedded mesh; *, pressure side;Is A ,  suction sideI6 

remains good downstream of the shock. However, as the trailing edge is approached, the 
boundary layer does not resist the adverse pressure gradient and separates, causing the pressure 
distribution to tend to level out. Such trailing edge separation is not observed in the experiment. 
The algebraic turbulence model employed is believed to be largely responsible fot this behaviour, 
as has been concluded by comparative studies of different turbulence models for transonic 
aerofoils." The pressures on the pressure and suction sides match at the trailing edge and the 
somewhat lower pressure level at the suction side influences the pressure-side distribution, 
causing it to deviate slightly from the experimental results. The deviation is approximately the 
same over most of the pressure surface. Unfortunately, corresponding measurements for skin 
friction were not performed. 

8. CONCLUDING REMARKS 

A compact, finite volume, explicit scheme for the two-dimensional Navier-Stokes equations of 
viscous fluid flow was developed. The scheme is suitable for adaptive algorithms, which employ 
locally embedded quadrilateral meshes, as well as equation adaptation. Extension of a Euler 
solver to include viscous terms requires consideration of numerical problems related to treatment 
of the viscous terms. These issues are addressed in order to design an accurate Navier-Stokes 
solver. The issues were investigated with respect to the specific scheme presented. However, the 
approach of the investigation as well as the conclusions are valid for an entire class of finite 
volume algorithms. 
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The inviscid term scheme is a one-step Lax-Wendroff-type scheme. Treatment of the viscous 
terms required employment of two staggered cells, one for evaluation of first-order derivatives 
and the other for second-order derivatives. Scheme operations were split in such a way that no 
additional information is required from outside each cell when integrating that cell, which is an 
important property for an unstructured grid solver. No assumptions were made that would 
prohibit extension of the present 2D scheme to three dimensions. The scheme is conservative. 
Grid stretching introduces a severe accuracy error to evaluation of the second-order derivatives 
of the viscous terms. 

The present viscous term scheme with the staggered cell arrangement suppresses both the one- 
and two-direction sawtooth modes. However, artificial dissipation is still required for capturing 
shocks and for suppresion of oscillations in the inviscid region of the domain. Optimum values of 
the smoothing coefficients can be obtained by employing test cases. The solution in the viscous 
regions is very sensitive to smoothing. The magnitude of the artificial dissipation terms must be 
much smaller than the magnitude of the real viscous terms, which gives expressions for the 
smoothing coefficients as well as for the required number of grid points across a boundary layer in 
order to avoid boundary layer contamination. Also, grid stretching increases the smoothing error 
and makes the operator dispersive instead of dissipative. Finally, the test cases employed 
demonstrate both the accuracy and robustness of the algorithm. These cases include both 
subsonic and transonic flows with channel and aerofoil geometries. The Navier-Stokes scheme 
was coupled with an adaptive algorithm for the high-Reynolds-number aerofoil cases. 
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